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A two-dimensional model of the heat transfer in a furnace chamber with excess 
argon pressure for the growth of A2B ~ crystals by the Shtober method is pro- 
posed. 

In developing the design of thermal elements of crystallization units, it is necessary 
to determine how a temperature field of complex configuration, corresponding to the techno- 
logical requirements in all stages of the process, may be created in the melt-crystal sys- 
tem. As a rule, temperature fields are investigated on mockups of the thermal elements, and 
then the results are transferred to the industrial design. Another effective method of 
analyzing the thermal conditions is mathematical modeliing of the heat transfer, permitting 
the solution of a whole series of problems in the design of a thermal element and the de- 
velopment of a technological program. To obtain satisfactory results in mathematicalimod- 
eling, two conditions must be satisfied: adequacy of the mathematical model to the real 
physical object; and reliability of the data on the thermophysical and optical properties 
of all the bodies involved in heat transfer. In practice, these conditions are met fairly 
rarely. 

This is absolutely the case in investigating the heat transfer in units for growing 
A2B 6 crystals. Since these methods are highly aggressive at high temperature, contact 
methods of measuring the temperature directly in the melt-crystal system cannot be used, 
and the growth technology in the closed graphite containers is optical. 

The presence of gas (usually argon) at high pressure (20 atm) in the chambers entails 
taking account of the convective component of heat transfer [i, 2], which prevents the use 
of the models employed earlier in calculating such equipment [3]. In addition, fundamentally 
new equipment is considered in the present case: an apparatus based on the Shtober method, 
which has not been used previously in growing A2B ~ but is now more promising in view of the 
more stringent size requirements - primarily on the crystal diameter. 

Consequently, a two-dimensional model is used for the heat transfer in the furnace with 
radiational heating in the presence of volume absorption and radiation in the component and 
with the possibility of specifying the convective boundary conditions at the surface of parts 
of the thermal element. 

The formulation of the problem is as follows. The component to be treated is placed in 
a closed space (axisymmetric and plane-parallel versions are possible). In axial cross sec- 
tion, the chamber is a polygon of arbitrary shape, consisting of elements in which each side 
is parallel to one of the coordinate axes. These elements are massive bodies with a thermal 
capacity. In addition, it is possible to specify bodies with no thermal capacity in the 
working space - screens and heaters. 

In bodies with thermal capacity, the two-dimensional Fourier heat-conduction equation 
is solved; in some of them, the problem of radiative-conductive heat transfer is solved. All 
the thermophysical properties are specified as a function of the temperature. The optical 
properties - the absorption coefficient, the refractive index for a semitransparent element, 
and the radiative properties of the other bodies - are assumed to be constant in the whole 
temperature range. The spectral region of the radiation (X 0, X n) is divided into n intervals 
(X0; Xi) ; (Xi; X2);... ; (Xn_i; Xn) ; X 0 and X n are chosen so that the proportion of the ra- 
diant energy emitted in the intervals (0; X 0) and (Xn; ~) is small at the working temperatures. 
Two values from the set (X 0 ..... An) - %i and h i - are the boundaries of the transparency 
region of the object. In the spectral interv~s~(Xi; Ai+I),...,(Xj-I; Xj) the absorption co- 
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Fig. 1 Fig. 2 
Fig. i. Thermal conductivity of fibrous carbon materials in vacuo (i- 
5) and in argon (i'-5'): i) TKM-0.14 (perpendicular to the fiber di- 
rection); 2) TKM-0.3 (perpendicular); 3) TKM-0.14 (parallel to the 
fiber direction); 4) TKM-0.3 (parallel); 5) VVP-2500 felt. ~, W/m'K; 
T, K. 

Fig. 2. Calculation scheme for thermal element of apparatus: I-VII) 
heat-insulation blocks; VIII-X) crucible; XI) bunker holder; XII-XIV) 
loading bunker; XV) melt-crystal; the points denote the vertices of 
the radiant heat-transfer sections; 1-43) numbers of the sections. 

efficients and reflective indices are specified; these parameters are constant within each 
interval. It is evident from this formulation that the grey-selective problem is considered 
here; this is the internal heat-transfer problem in the furnace, in the present case. The 
corresponding calculation method will not be outlined here, since it was described in detail 
in [4], which is a development of [5-7]. 

The external problem includes the calculation of the heat transfer between structural 
elements and the heat loss to the atmosphere through the heat insulation. The heat transfer 
between the elements is by conduction through the contacting surfaces and radiation. It is 
possible to specify convective heat-transfer conditions. At the external wall, boundary con- 
ditions of the third kind are specified. In calculating the radiant heat transfer, the to- 
tal matrix of angular coefficients is calculated [8]. 

To specify the conditions of convective heat transfer, the whole working volume is di- 
vided into zones of convective heat transfer. Within the limits of each zone, the heat trans- 
fer of the gas with the structural elements is schematized according to one of the given mod- 
els of convective!heat transfer: for example, free convection at a horizontal plate in up- 
ward flow, free convection between two horizontal (vertical) plates, free convection between 
two vertical coaxial cylinders, etc. 

Within the limits of each convective zone, the local heat-transfer coefficients ~ = f(T; 
T b) to the solid wall are specified, on the basis of literature data on the dependences Nu = 
f(Gr; iPr). 

In the general case, the boundary condition at the boundary of the heat-conducting body 
is written in the form 

0TM 
- -  ~M ~ M  = qj + =k (T~I; Tb,h) (TM --  Tb,h), ( 1 ) 

where j is the number of the radiational heat-transfer zone which includes boundary point M 
of the body; k is the number of the convective heat-transfer zone including point M: s is the 
normal to the body surface at point M. 
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Fig. 3. Radial temperature distribution in the crucible 
at the stage of melt holding, specifying purely radiative 
(a) and radiational-convective (b) heat transfer in the 
working space; the figures on the curves give the coordi- 
nate over the height of the crucible. T, K; r, mm. 

Suppose that 
ki+1 

~ , = ~  ( lp,x(T) dk 

i s  the  d e n s i t y  of  blackbody r a d i a t i o n  in the  f requency  range [Xi; k i + l ] ;  Ip, A(T) i s  the  
Planck i n t e n s i t y  of  the  e q u i l i b r i u m  r a d i a t i o n  in vacuum a t  t empera tu re  T. Then in Eq. (1) 

q:  = -~ - s ,  o . E  ~, o �9 
~.~ 8Xg,: [ inq, j-- ~i (T:)], (2) 

[~i;~i+1]er tr 

where subscript s denotes surface flow; 0 denotes that the flux corresponds to the external 
radiation problem; rtr denotes the region of transparency of the component. 

For bodies with no thermal capacity, in equilibrium with the other elements (the purely 
radiational case), the heat-balance equation is solved. For a section of a heater (screen) 
with two sides Sjl and S j2 

S ~ - ~ - s , 0 ~ s , 0  - s  0 s ,0  
: ,~ <,: , : , , : , -  ~ (T:)] + s:,  ~ <./ ,  [E~.:, - ,~ (T:0] = ~ (h, is) ( 3 )  

(in the case of a passive screen, W = 0). The sum in Eq. (3) and in all cases where no 
spectral region is indicated extends over all the spectral intervals ~ e [0; =). 

On the basis of Eq. (2) 

S:~ q:~ + S:~ q:~ = ~ (A, JO. (4.) 

In addition, the condition of a thermally thin screen (heater) is assumed: Tjl = Tj2. 

If 

Y: ( T )  = ~_~ -8~,:*i ( T )  

[ki;~i+1] 

is the flux density of intrinsic radiation of the zone S j, a one-dimensional nonlinear equa- 
tion of the following form is obtained from Eq. (3) for determining the temperature TJl of a 
thermally thin heater (screen), assuming that the incident flux Ein c is known from the pre- 
ceding iteration and the radiative properties of both sides of the heater (screen) are the 
same 

A~ + B y j  (~) = Cj, (5) 

where 

AI1 = 0; Bil = S/, + S:,; C:, = S:1 ~ -~,o ~ ,o  ~_ -s,o E~,O W (Jl, J~). 8 i , A L i . h . - t -  S j 2  ~/~ gf.i2 i./2-- 
[~i; ~i+l  ] } [~i ;ki 41 ] 

In the  program, equa t ions  of  the  form in Eq. (5) a re  so lved  by i n v e r s e  i n t e r p o l a t i o n  on 
the  bas i s  of  t a b l e s  of  the  f u n c t i o n  AT + BY(T). 

The energy balance at the two-sided section of the screen is written in the following 
form, taking account of convective heat transfer 

�9 S:~ (%, h, (T:, -- T~, ~) + q:,) + S:~ (~2, ~,~ (~?:~ -- T~, ~) + q:) = W (1~; /0- (6) 
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Equation (6) takes the form in Eqz (5) if the incident radiation is separated from the in- 
trinsic radiation at temperature T in the expression for q. 

In the grey case - s ~ f(X) - Eq. (5) reduces to the form DIT 4 + D2T = D 3, which may be 
solved by Newton's method or by the accurate formula containing radicals. 

The equation for gas heating (cooling) in the k-th convective heat-transfer zone takes 
the form 

dTb,k __ , ~  Sz,~h (Tb~ - -  Ti) + Q~, ( 7 ) cnmn d~ 

where Si, k are the gas-immersed surfaces in the k-th convective heat-transfer zone; m k is 
the gas mass in the k-th zone (assumed to be proportional to the volume of the zone); Qk is 
the heat influx to the gas on account of convection 

Qh = ~ Qconvt, h. 
f 

The summation in  Eq. (7 )  i s  t a k e n  o v e r  a l l  t h e  zones  a d j a c e n t  t o  t h e  k - t h  

Qconv = Fj,hf (T j; T~), (8 )  
j , h  

where Fj, k is the surface area of intersection of zones j and k; f(Tj; T k) takes account of 
the mutual position of zones j and k. 

In taking approximate account of convection using Eq. (8), ?convj,k = Qconyk,j" The com- 
puter time required in this case is not greatly different from ~nan requlrea when convection 
is ignored, since the number of convective zones is small and combined solution of Eq. (7) 
with the equations of radiative and conductive heat transfer is not particularly difficult. 

Note that the results given by the program in modeling the heat transfer in a unit where 
gallium-scandium-gadolinium garnet is grown by the Czochralski method (only radiant heat 
transfer) are in good agreement with experimental data [9]. 

Thus, this program permits the calculation of the temperature field in units with ra- 
diant heat transfer in the presence of a single semitransparent element, and allows the con- 
vective heat transfer to be taken approximately into account by specifying the local heat- 
transfer coefficients. 

The basic problem in thermal calculations with such equipment is the lack of data on 
the thermophysical and optical properties of the crystal being grown and the materials of 
the structural elements. 

The lack of literature data on the thermal conductivity ~, absorption coefficient k, and 
refractive index of A2B 6 materials - the most common of which, ZnSe, is chosen for modeling 
here - at temperatures above 600 K is evidently explained in that such materials are highly 
aggressive and volatile. The situation is similar for the heat-insulation material: the 
graphite composite TKM, for which ~ depends significantly not only on the temperature, but 
also on the density, the direction of fiber packing (~i, transverse to the fibers; ~ll, along 
the fibers), and the presence or absence of gas in the working space. 

To date, this topic has only been addressed in [i0], which found the dependence ~(T) in 
vacuo for various densities of the material when ~ll/~i = 2, which was assumed to be the case 
for the whole of the temperature and density range. 

In the present work, these problems are solved empirically, on the basis of the similar- 
ity of heat transfer in the materials being studied and others, and so on. 

The choice of ~i(T) for ZnSe on the basis of the model material - high-porosity molyb- 
denum foam - was described in [i, 2]. For 1750-1800 K, ~ is around 6 W/m-K; 100% variation 
of ~/at T = 1800 K is specified in modeling the phase transition: from 6 to 3 W/m-K. Mea- 
surements of the absorption coefficient of ZnSe show that it loses transparency in the near- 
IR range at i000 K [ii]. This suggests that both the crystal and the ZnSe melt are complete- 
ly nontransparent to IR radiation close to 1800 K, which is characteristic for semiconduc- 
tor materials overall. In the present case, k = 5-103 cm -I is assumed for ZnSe. The data on 
n(%) are taken from [12]; on the basis of the dependence (dn/DT)(%) in [12], n(~) is calcula- 
ted for ZnSe at 1600-1800 K. 

The thermal conductivity of TKM in the presence of argon is calculated on the basis of 
the structural similarity of this material and VVP-2500 graphite felt, for which ~ is known 
in argon and in vacuo [13] 
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• ( T ) T I ~ ,  A~ = • (T )  ~rI~,  vacuum x (T )v v P  ' vacuum 

The calculation results for ~ are shown in Fig. I, together with literature data for 
these metals. 

Taking account of the graphite base and the porous structure, the emissivity of TKM is 
assumed to be 0.95. 

The calculation model of the thermal zone of the apparatus is shown schematically in 
Fig. 2. The massive bodies are the heat-insulation units, the loading bunker, the container, 
and the charge; the bodies with no heat capacity are the heaters. The division of the mas- 
sive bodies into individual rectangles depends on their thermophysical properties and the 
requirements of the program regarding the configuration of the structural elements. The 
radiant sections of the heater correspond to their real electrical zones with different ener- 
gy liberation. At the other surfaces, the radiant sections are specified on the basis of 
increase in accuracy of the calculation with simultaneous reduction in machine time. The 
total number of radiant sections is 43. To calculate the temperature field in the massive 
bodies, the whole model is divided into cells by means of a single grid. The number of grid 
points is 28 over the height and 16 over the radius. 

Calculations are performed for conditions of melt holding, specifying both purely radia- 
tional and radiational-convective heat-transfer conditions in the working space. In the 
second case, in accordance with the recommendations of [14], the convective heat transfer is 
specified at vertical surfaces (the lateral heat-insulation blocks, the bunker holder) and 
at horizontal surfaces with the hot surfaces above the cold surfaces - for example, in the 
system of the upper heater, the floor of the loading bunker, etc. The heat-transfer coeffi- 
cients are calculated for each case from the dependences in [14]. The data on the argon 
properties do not depend on the pressure, apart from the gas density, which is directly pro- 
portional to the pressure [15]. 

The calculation results show (Fig. 3) that the temperature field in the container volume 
does not depend on the presence of gas in the working chamber, in the absence of free cavi- 
ties with a large temperature difference at the boundary surfaces and at a temperature level 
ensuring the predominant influence of the radiative component. Overall, the value of ~ of 
the porous heat insulation and hence the power required by the apparatus depend on the pres- 
ence of gas in such conditions. 

The power of the heaters in the basic stages of the technological process has been de- 
termined by the given model and nonsteady conditions of melt crystallization have been found. 
The data obtained may be used to develop the design of thermal elements and a technological 
program to perform the corresponding process. 

NOTATION 

~, thermal conductivity; T, temperature; qR, radiative flux density; ~, heat-transfer 
coefficient; g, emissivity; Einc, spectral density of radiative flux incident at the body; 
W, power; c, specific heat of gas; m, mass of gas; Q, heat influx to gas on account of con- 
vection; X, wavelength. 
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CALCULATION OF METAL PLATE FUSION BY A 

CONCENTRATED ENERGY FLUX 

A. A. Uglov and O. G. Sagdedinov UDC 536.421:539.211 

The one-dimensional problem of heating and melting of a metal plate by a constant 
surface heat source is considered. The kinetics of fusion front motion are stud- 
ied with consideration of absorption of the latent heat of phase transition up to 
temperatures close to the boiling point. 

Studies of the processes of heating and formation of a melt under the action of concen- 
trated energy sources on condensed media have been under way for quite some time. Interest 
therein has been stimulated by the need to develop laser, plasma, electron-beam, ion, and 
other forms of materials processing. In such technological processes as laser doping, sur- 
facing, laser-plasma compound synthesis, etc. redistribution of components initially depos- 
ited on the~target surface, gas saturation, chemical compound synthesis, and other pro- 
cesses take place in the liquid phase. To study and optimize the latter it is necessary to 
know the depth of the melt pool and the temperature distribution therein to a sufficient 
accuracy. In connection with this, a series of studies [1-9] has been dedicated to solution 
of the problem of fusion under the action of a concentrated energy source. In [8] the ap- 
proximate Blot method was used to consider fusion of a semi-infinite target. The shortcom- 
inBs of that technique are: the complexity of theoretical justification, insufficient accu- 
racy (the erroriin determining pool depth reaches 15%), and the absence of any generaliza- 
tion to fusion of finite plates. Numerical calculation by a computer was used in [9] with 
a finite difference technique and explicit specification of the fusion front. The short- 
coming of this method is the necessity of composing a complex program. 

In the present study we will offer an approximate analytical solution of the problem of 
heating and fusing a metal plate of finite thickness, which is characterized by simplicity, 
high accuracy (error of about i%), and ease of use. Major attention will be given to phase 
transition kinetics. 

We will briefly describe the process to be considered. A constant energy flux is inci- 
dent on a metallic target of finite thickness and is absorbed upon the surface. We will as- 
sume that the coefficient for absorption of the concentrated energy flux by the surface is 
approximately constant, which is valid, for example, for a low-energy electron beam. More- 
over, we let the transverse dimension of the source action zone R be much greater than the 
target thickness H: R ~ H. The problem can then be considered in one-dimensional~formulation. 
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